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Distributed Parameter Estimation Over Unreliable
Networks With Markovian Switching Topologies
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Abstract—Due to the existence of various uncertainties, the
design of distributed estimation algorithms with robustness and
high accuracy is an urgent demand for sensor network applica-
tions. This paper is aimed at investigating the design of distributed
parameter estimation algorithms and the analysis of their con-
vergence properties in uncertain sensing and communication
environments. Consensus-based distributed parameter estimation
algorithms for both discrete-time and continuous-time cases are
established, which are suitable for unreliable communication net-
works with stochastic communication noises, random link gains
and Markovian signal losses. Under mild conditions on stochastic
noises, gain function and topology-switching Markov chain, we
establish both the mean square and almost sure convergence of the
designed algorithms by use of probability limit theory, algebraic
graph theory, stochastic differential equation theory and Markov
chain theory. The effect of sensor-dependent gain functions on the
convergence of the algorithm is also analyzed.

Index Terms—Consensus, distributed estimation, multi-agent
systems, sensor network, stochastic approximation.

I. INTRODUCTION

A. Background and Motivation

C OMPRISED of large numbers of spatially distributed
electronic nodes with certain capability of sensing,

computation, and communication, sensor network has obtained
wide span of applications due to its flexibility, high accuracy,
low cost, fault tolerance, and ease of deployment characteristics,
for example, environment monitoring, disaster surveillance,
military reconnaissance, etc. ([2] and [3]). Among the theoretic
researches for sensor network, one fundamental problem is the
distributed parameter estimation in uncertain environments,
which is proposed because of the following practical demands.
On the one hand, due to the limited sensing capability, each
sensor can only sense or observe partial information of the
unknown parameter. If we solely use these local measurements
to conduct parameter estimation, the observability for the whole
information of the unknown parameter often cannot be assured.
On the other hand, due to the limited communication ability,
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each sensor can only exchange information within its neigh-
bors. Thus, a natural idea is whether we can design a scalable
distributed estimation algorithm based on local measurements
of each sensor and local communications among neighbor sen-
sors, and finish the estimation task for the unknown parameter
cooperatively. Coordination among sensors can enhance the
global observability of the sensor network. Compared with cen-
tralized ones where local measurements need to be transmitted
to a fusion sensor for processing, the distributed estimation
scheme has the advantages of robustness for single node failure
and reductions of communication and computation costs, thus
can extend the lifetime of the sensor network. As a result,
the distributed parameter estimation algorithm design and
its convergence analysis are of significance, and have gained
more and more studies recently. Consensus-based distributed
estimation algorithm is one of such important algorithms.

As the name suggests, consensus-based distributed estima-
tion algorithm contains a consensus scheme, which reflects
the coordination among sensors. By introducing the consensus
scheme in algorithm, it can be expected to achieve the fol-
lowing goals: making the algorithm more robust to various
uncertainties such as communication noises, measurement
noises, communication link failures, etc., and improving the
overall estimation accuracy, by use of the coordination nature
of the consensus scheme; increasing the convergence rate and
noise immunity of the algorithm by use of the “convexification”
procedure of the consensus scheme for the information of each
sensor’s neighbors ([4]). Thus, the study of consensus-based
distributed estimation algorithm is closely related to that of
consensus scheme. Actually, due to its wide applications in
distributed control and distributed estimation, distributed con-
sensus problem of multi-agent systems has become a relatively
independent research field, obtaining deep and comprehensive
results. The interested readers are referred to the literatures
[5]–[14] and references therein.

Meanwhile, the results on consensus-based distributed es-
timation algorithm and its convergence analysis are gradually
coming up. [15] proposed a distributed estimation algorithm
based on diffusion strategies. This scheme can help to percolate
new data across sensor network, but increases communication
cost and degrades estimation performance when the data is
corrupted by uncertainties such as communication noises. To
deal with these issues, [16], [17] introduced the “bridge” sensor
subset, transformed the global convex optimization problem
into an equivalent constrained form suitable for distributed
implementations, and by a distributed optimization method,
developed a distributed least squares method ([17]) and a dis-
tributed least mean-squares method ([16]). They proved that in
the noise-free case, the estimate was exponentially convergent
to the unknown parameter; and in the case of measurement
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noises and communication noises, the estimation error was
weakly stochastic bounded. [18] designed distributed estima-
tion algorithms for both linear and nonlinear models, dealing
with the uncertainties such as quantization errors and random
link failures. It is shown that the algorithms are almost surely
convergent, asymptotically unbiased and normal. To ensure
the quantization error has a good statistical property, a random
dither is added to the signal to be quantized and transmitted.
Besides, it is assumed that the communication link failures are
temporally independent, which can be seen from the condition
that requires the Laplacian matrices of the communication
topology graphs are independent and identically distributed
(i.i.d.). [4] proposed a distributed estimation algorithm by com-
bining local stochastic approximation and consensus scheme to
deal with the uncertainties such as independent communication
noises and independent switches of communication topologies.
The estimate is shown to be mean square convergent. The liter-
atures about distributed Kalman filter algorithms are referred to
[19], [20], where both the state model and measurement model
of the sensors are required to be known.

B. Main Contribution

This paper is about to consider the design and convergence
analysis of distributed parameter estimation algorithm over
unreliable communication networks. The uncertainties include
measurement and communication noises, random link gains,
and temporally correlated signal losses. Random link gains
often result from uncoded analog signal transmissions during
large sensor network applications ([8]). Signal losses are often
caused by temporary faults of the sender and receiver, or
active topology switches to adapt to high level commands and
environment changes. [4], [18] have analyzed the discrete-time
distributed estimation problem by using i.i.d. random graph
sequence to capture the loss of connectivity. However, in
practice it is often the case for randomly switching topologies
to be temporally correlated. Thus, in this paper we introduce a
discrete-time Markov chain to capture the temporal correlation
of the random topology switches. These additional uncertain-
ties encourage us to design effective algorithms and analysis
methods. In this paper, a stochastic approximation-type dis-
tributed parameter estimation algorithm is proposed. Besides
the mean square convergence as discussed in [4], the almost
sure convergence is also obtained by use of probability limit
theory, algebraic graph theory and Markov chain theory.

In addition, we notice in the existing literatures, the design
and convergence analysis of continuous-time distributed esti-
mation algorithms have received relatively little attention. Thus,
a stochastic approximation-type continuous-time estimation al-
gorithm is presented and analyzed rigorously in this paper. It
should be noticed that the discrete and continuous-time algo-
rithms are designed in a unified way, but are analyzed by using
very different methods. For the continuous-time case, after as-
suming the random measurement matrices, random measure-
ment and communication noises as white noise sequences, the
analysis on the convergence of the algorithm is transformed to
that on the stability of the Markov switching stochastic differ-
ential equation describing the dynamics of the parameter esti-
mation error. By using probability limit theory, algebraic graph
theory, Markov chain theory and stability analysis methods of
the continuous-time Markovian jump parameter systems ([21]),

the proposed continuous-time algorithm is shown to be conver-
gent both in mean square and almost surely. The effects of dif-
ferent gain functions on the convergence of the designed algo-
rithms are also analyzed in this paper.

C. Organization of the Paper and Notations

The rest of this paper is organized as follows. In Section II,
we present some related graph notations, and formulate the
distributed parameter estimation problem to be investigated. In
Section III, we propose a discrete-time parameter estimation
algorithm, and prove it converges both in mean square and
almost surely. In Section IV, we consider the continuous-time
counterpart. In Section V, we use two numerical examples to
illustrate the theoretic results obtained. In Section VI, we give
some concluding remarks and further research topics.

The following notations will be used throughout this paper.
denotes the dimensional identity matrix. is an dimen-

sional vector whose elements are all ones.1 For a given vector
or matrix , denotes its transpose, denotes its Euclid
norm, denotes its null-space. The Hadamard product
of two dimensional matrices and is denoted by
with each entry , , .
The Kronecker sum of two square matrices and

is defined by , where
denotes the Kronecker product.

II. PROBLEM STATEMENT

In this section, we first present some preliminary notations
on graph theory which will be used throughout this paper. The
distributed parameter estimation problem is then formulated, in-
cluding the modeling for local noisy measurements and unreli-
able communication network.

A. Graph Theory Notations

Consider a sensor network with sensors. The communi-
cations between sensors are modeled by a weighted digraph

, where is the node set, and
node represents sensor ; is the edge set,
and a direct edge if and only if there is a commu-
nication link from to , where is defined as the parent node,
and is defined as the child node. is the
weighted adjacency matrix of with , and if
and only if . denotes the
neighborhood of node . Here, we assume the self-edge is
not allowed.

is called a balanced digraph, if
for all . is called an undirected graph, if is symmetric.
The Laplacian matrix of is defined as ,
where . For a given
matrix , is called
the digraph generated by , where , ,

, . The mirror graph of the digraph is an undi-
rected graph, denoted by with ,

([6]). For a given positive in-
teger , the union of digraphs is denoted
by . A sequence of
edges is called a path from to

. is called strongly connected if for any , there is a

1When the dimension of the vector is clear, the subscript � will be omitted.
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path from to . A directed tree is a digraph, where each node
except the root has exactly one parent node. A spanning tree of

is a directed tree whose node set is and whose edge set is a
subset of .

B. Sensing and Communication Models

Consider sensors with a common task to estimate an di-
mensional unknown parameter via coordination among sen-
sors. Assume each sensor receives local noisy measurements
of independently. Due to the limited sensing ability of each
sensor, it is often the case that the local measurements obtained
only reflect partial information of , i.e., . In such a sit-
uation, if only local measurements are used to conduct the esti-
mation task, then at most a part of the parameter is estimated.
Thus, we need to design an efficient distributed estimation algo-
rithm for each sensor, and make their estimation states converge
to via local communications among sensors and iterations of
the algorithm.

For sensor , its local measurement at each
time instant for the unknown parameter vector is assumed to
be a stochastic linear function with and corrupted by random
noises. In other words, we model the local measurement of
sensor at time as follows:

(1)

where and denote the measurement vector and
random measurement noise of sensor at time , respectively;

denotes the time-varying random measurement
matrix.

Denote the ideal communication network of sensors by
. In practice, due to various uncertainties,

some links are failure-prone with positive probability. As-
suming is failure-prone, we will use a Markov
chain with the state space {0,1} to describe its temporal
evolution, where state “1” denotes the link is normal or created,
while “0” denotes the channel is lost. Let us make a fixed
ordering for all links in , according to which the Markov
chains of all failure-prone links can be listed into a vector .
Obviously, has a finite state space , each state of which is
an -dimensional vector with 0 or 1 as its element, where
is the number of all failure-prone links. Label the states of in
sequence as a set , , corresponding to
the communication topology graph set ,
where is a digraph. Without loss
of generality, we assume the first state is , which
amounts to saying . Denote the Markovian random
communication graph at time by . We say 2 if and
only if . Thus, it can be seen that the random process

completely describes dynamic changes of the communica-
tion topology. In addition, the Markov chain model can also
capture the uncertain aspects of quantization error and packet
loss in digital communications ([8]). Notice that, no constraint
is made on the spatial evolution of unreliable links, i.e., the link
failures may be spatially correlated, which is significant for the
application of erasure communication networks.

Each pair of adjacent sensors exchanges information in the
following way: at the sender side of the communication channel

2For convenience of expression, in this paper, “random process � takes the
�th state at time �” is simply written as� � �, regardless of the inconsistence
of their dimension.

, sensor sends its parameter estimate to sensor
. Due to the uncertainties of communication channels, at the

receiver side of the channel , sensor receives an estimate
of , denoted by

if ,
if

(2)

where denotes the random link gain of ,
which often results from uncoded analog communication chan-
nels in large sensor network applications due to the simplicity
and low delay properties ([8], [22]); is the stochastic ad-
ditive communication noise, which can be used to model the
thermal noise, channel fading, etc. ([9] and [10]). The combi-
nation of the Markovian link failure model and model (2) is
reflected by the random edge set sequence . In this paper,
we assume sensor knows the statistical information

of the random link gain . Notice that the random
link gain and communication noise are defined at
all times for all links . When the link is not
active, and can be understood as dummy random
variables ([8]). According to the fixed ordering of all links in

, and can be listed
into the random vectors and , respectively.

III. DISCRETE-TIME DISTRIBUTED ESTIMATION ALGORITHM

AND CONVERGENCE ANALYSIS

In this section, we assume each sensor can obtain local noisy
measurements at discrete time instants . Based on
the unreliable sensing and communication models in Section II,
by using the local noisy measurements and local communica-
tions within neighbor sensors, a discrete-time distributed esti-
mation algorithm is proposed for each sensor in Section III-A.
The convergence properties of the designed algorithm are then
analyzed in Section III-B.

A. Distributed Estimation Algorithm

For sensor , we propose the following dis-
tributed algorithm to estimate the unknown parameter :

(3)

where is the parameter estimate of sensor at time
; denotes the neighborhood of sensor at time ; is

the mathematical expectation of ; is the estimate
of received by sensor , which is defined by (2); is
called gain function; is decided by the weighted adja-
cency matrix of the communication topology graph , i.e.,

. When is empty, is defined as 0.
To facilitate convergence analysis of (3), we rewrite it in the

following compact form:

(4)
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where with the initial
state satisfying , denotes the
Laplacian matrix of the communication topology graph

, ,
, ,

,

(5)

Remark 1: Algorithm (3) can be seen as a combination of a
“filtering” part to obtain the local estimate by stochastic approx-
imation algorithm based on each sensor’s own measurements,
and a “prediction” part to obtain the final estimate by convexi-
fying the local estimates of neighbor sensors based on stochastic
approximation-type consensus scheme. Specifically, algorithm
(3) can be represented in the following two steps:

(6)

(7)

Here, we do not make “convexification” to the local estimation
increment in (6). This is because, if we
do so, there will be an additional term with as its coeffi-
cient in the “prediction” part (7), whose influence on the conver-
gence of the algorithm will be dominated by those terms with
coefficient (see the proof below). The stochastic approxi-
mation-type consensus scheme ([8]–[10]) is introduced in the
algorithm to make the parameter estimates of all the sensors
reach a common value in the case of noisy communication chan-
nels. When the local estimate of some sensor does not update,
this scheme can use coordination among sensors to improve the
estimate, and thus, improve the convergence rate and estimation
accuracy of the algorithm.

Remark 2: Similar algorithms as (3) can be found in [18].
The key difference between them is the introduction of more
uncertainties including Markovian random switches of commu-
nication topologies and random link gains. To be specific, in the
algorithm (3), represents the weight sequence of unre-
liable link driven by a Markov chain; denotes
the estimate of sensor ’s estimation state received by sensor ,
taking into account the effect of random link gain.

Below, we will prove the mean square and almost sure conver-
gence of the algorithm (4) under some mild conditions on sto-
chastic noises, gain functions and topology-switching Markov
chain.

B. Convergence Analysis

Define the -algebra

To analyze the convergence of algorithm (4), we make the fol-
lowing assumptions:

A1) The digraph , , is balanced, and the union
of the communication topology set ,
denoted by , contains a spanning tree.
A2) and are two
martingale difference sequences (m.d.s), with bounded
second moments and

.
A3) The random measurement matrix is inde-
pendent of , and has the mathematical expec-
tation , and bounded second mo-

ment . The matrix
is of full rank.

A4) The random link gain matrix is independent of
. are mutually independent (w.r.t. ), with

full-rank mathematical expectation and
bounded second moment .
A5) is a homogeneous ergodic
Markov chain with the transition probability ma-
trix , where

.
A6) The gain function satisfies: ;

; .
A6 ) The gain function satisfies: ;

; .
Remark 3: A1) is a joint connectivity condition on the com-

munication topology. Intuitively, it means that if the commu-
nication connectivity relation among the sensors visits all di-
graphs of in certain time interval, then for any pair of sen-
sors and , sensor can influence sensor in this time interval
only by local interactions among sensors. A2) is a condition on
temporal correlation of communication and measurement noise
sequence, and does not make any constraints on spatial correla-
tion at any time instant. The m.d.s assumption for the noise se-
quences is weaker than the independent assumption in [4], [18].
In A3), being of full rank is a global observability condition
([18]), which together with the statistical assumption on indi-
vidual measurement matrices will play a crucial role in conver-
gence analysis. The coordination nature of distributed estima-
tion requires conditions in both temporal and spatial scale. Thus,
to take advantage of coordination among sensors in spatial scale,
we will not use the typical persistent excitation condition in tem-
poral scale on measurement matrices as the classical regression
models, which can ensure each individual sensor to obtain ac-
curate estimates based solely on its own measurements. A5) is
on the ergodicity of the Markovian random switches of com-
munication topologies. From Markov chain theory ([23]), a dis-
crete-time Markov chain with finite states is ergodic if and only
if it is irreducible and aperiodic. From the discussions below, for
a more general case where has finite number of irreducible,
recurrent closed sets, and the union graph corresponding to each
closed set contains a spanning tree, the convergence of the de-
signed algorithm can also be proved.

Before conducting the convergence analysis of the algorithm
(4), we need the following lemma.

Lemma 3.1: Assume is a balanced digraph containing a
spanning tree. For any positive constant , the matrix
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is positive definite if and only if
is of full rank, i.e., the global observability condition holds.

Proof: By [6, Th. 7], we know that is the
Laplacian matrix of the mirror graph , i.e., .
Thus, we need only to prove that is positive
definite if and only if is of full rank. Noticing the
property of , we know that is an undirected connected graph,
and if a nonzero vector satisfies , then
it must have the form , . Thus,
from the positive semi-definiteness of and it follows
that is positive definite if and only if

, . Obviously, the latter is
equivalent to the global observability condition.

For convenience of further analyzing the convergence prop-
erty of the algorithm (4) under the joint connectivity condition
A1), similar to [8], we first consider a little simpler topology
connectivity condition. In other words, we make the following
assumption:

A1 ) The digraph , , is balanced,
contains a spanning tree; and .

Assumption A1 ) says at each time instance the network
topology will be connected with a positive probability. Since
we will use the Lyapunov method to conduct the algo-
rithm analysis, this condition guarantees the energy function

can decay with the rate after
one step, where is some positive constant. The algorithm
analysis under this condition will give an insight to that under
the joint connectivity condition. This is because, essentially
speaking, the joint connectivity condition together with the
ergodicity of guarantees the energy function decay with the
rate over a time interval, which leads to the more
complex convergence analysis of algorithm (4). Under the
above assumptions, we can prove that the distributed algorithm
(4) is both in mean square and almost surely convergent.

Theorem 3.1: Under Assumptions A1 ), A2)–A5), A6 ), the
distributed estimation algorithm (4) converges in mean square,
i.e.,

(8)

where is the parameter estimation error.
Proof: See Appendix A.

From the mean convergence criterion and dominated conver-
gence theorem ([24]), a gap exists between the almost sure and
mean square convergence of a random variable sequence un-
less the uniform integrability and certain moment conditions are
satisfied. Thus, based on Theorem 3.1 and the slightly stronger
condition A6) on the gain function, we now come to the almost
sure convergence of the algorithm (4).

Theorem 3.2: Under Assumptions A1 ), A2)–A6), the dis-
tributed estimation algorithm (4) converges almost surely, i.e.,

(9)

In addition, if , , then

(10)

Proof: See Appendix A.

Remark 4: Compared with [9, Th. 3.6], the noise condition
is weakened in this paper. Theorem 3.2 gives a rough esti-
mate for the convergence rate of the time-average estimation
error. As we know, if , then (10) naturally

holds. In addition, (10) together with some conditions on the
nonnegative sequence can also lead

. Thus, the convergence rate of the time-av-

erage estimation error reflects in a certain sense the convergence
rate of the estimation error itself. If the gain function is
chosen to satisfy ,
where , , , then monotonically
decreases and A6) holds. From (10), the convergence rate of
algorithm (4) is faster than , where is
a positive constant. Thus, we can improve the convergence rate
by properly choosing the coefficient and . The issue for more
accurate estimate of the convergence rate about the estimation
error rather than the time-average of estimation error, and more
rigorous theoretic optimization methods on the gain function is
of significance, and needs further investigations.

Theorem 3.1 and Theorem 3.2 provide the convergence anal-
ysis for the case where the distributed estimation algorithm of
each sensor has the same gain function . However, in prac-
tice, it is often the case that the gain functions are different.
Thus, it is significant to analyze whether the designed estima-
tion algorithm is still convergent when the gain functions are
different. In this case, we can express the distributed parameter
estimation algorithm in the following compact form:

(11)

where , , , and

have the same definitions as in (4).
For the algorithm (11), we have the following convergence

results.
Theorem 3.3: Under Assumptions A1 ), A2)–A5), if for each

sensor , its algorithm gain function satis-
fies Assumption A6 ) and

(12)

then the distributed algorithm (11) converges in mean square.
Furthermore, if each algorithm gain function satisfies

Assumption A6) and (12), then the distributed estimation algo-
rithm (11) converges almost surely. In addition, if ,

, then we have the following estimate for the conver-
gence rate:

(13)

where .
Proof: Due to the similarity with Theorem 3.1–3.2, the

proof is outlined in Appendix B.
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We now prove the corresponding convergence results as in
Theorem 3.1–Theorem 3.3 under the joint connectivity condi-
tion A1). In this case, the communication topology graph at any
given time instant may be not connected. Similar to Assumption
A4) in [9] and Assumption iii) of [8, Th. 7], to deal with the
time-varying coefficient matrices caused by topology switches,
we assume the gain function does not change too fast. To
be specific, we make the following assumption:

A6 ) In addition to A6), there are constants ,
such that , .

Theorem 3.4: Under Assumptions A1)–A5), A6 ), the dis-
tributed parameter estimation algorithm (4) is convergent both
in mean square and almost surely. In addition, if ,

, then a.s., as
.

Proof: See Appendix C.
Theorem 3.5: Under Assumptions A1)–A5), if for each

sensor , its algorithm gain function
satisfies A6) and (12), and there exist , such that

, , then the distributed
algorithm (11) converges in mean square. Furthermore, if (12)
is replaced by

(14)

then the distributed estimation algorithm (11) converges almost
surely. In addition, if , , then we have the fol-
lowing estimate for the convergence rate:

a.s., as , where .
Proof: The proof is similar to Theorem 3.4, and is outlined

in Appendix C.
Remark 5: At first glance, the algorithm (4) may have a faster

convergence rate under A1 ) than that under the joint connec-
tivity condition A1), since the energy function decays
after a certain time interval under A1), but decays after only one
step under A1 ). However, from Theorem 3.2–Theorem 3.5, ac-
tually we can only obtain the same convergence rate estimate
under the two different connectivity conditions. This is because,
by assuming the gain function slowly time-varying (As-
sumption A6 )), the energy function for both the two cases will
decay with the rate . The only difference lies in the
constant for the two cases, which does not affect the estimate
of convergent rate about the gain function. Thus, the faster con-
vergence rate under A1 ) may be reflected in the less multiples
of than that under A1).

By Remark 3, we further relax the ergodic condition on in
Assumption A5). Similar to the multi-agent consensus control
under Markovian switching communication topologies ([11]),
we will discuss the convergence of the designed estimation algo-
rithm by classifying the states of the Markov chain . From the
decomposition theorem of the states of a Markov chain ([23]),
we know that the state space of can be partitioned uniquely
as

where is the set of transient states, is the
irreducible closed set of (positive) recurrent states. We make the
following assumptions:

A1 ) The digraph , , is balanced, and ,
, contains a spanning tree, where is the union

of the communication topology graph set corresponding to
the state set .
A5 ) is a homogeneous Markov chain with
the transition probability matrix ,

.
Obviously, when , is empty, and is aperiodic,

Assumptions A1 ) and A5 ) are reduced to Assumptions A1)
and A5), respectively. According to the initial distribution, the
initial state of the Markov chain belongs to either the set of
transient states , or a certain irreducible closed set of recurrent
states , . For the former case, will finally reach
an irreducible closed set of recurrent states after finite time,
and will not jump out of it from then on. For the latter case,

will not jump out of the irreducible closed set from the
initial instant. Thus, for both cases, will take values in some
irreducible closed set of recurrent states after finite time. Based
on the above assumptions and Theorem 3.4, we can obtain the
following corollary addressing the convergence properties of the
distributed estimation algorithm (4).

Corollary 3.1: Under Assumptions A1 ), A2)–A4), A5 ),
A6), the distributed estimation algorithm (4) is convergent both
in mean square and almost surely.

IV. CONTINUOUS-TIME DISTRIBUTED ESTIMATION

ALGORITHM AND CONVERGENCE ANALYSIS

In this section, we assume each sensor obtains local noisy
measurements continuously. The continuous-time distributed
parameter estimation problem is considered in uncertain en-
vironments with measurement noises, communication noises
and Markovian random signal losses. To be specific, in
Section IV-A, after modifying the sensing and communica-
tion models (1), (2) to make them suitable for discussions in
continuous-time setting, we propose an estimation algorithm
described by a Markovian switching stochastic differential
equation. In Section IV-B, we prove the mean square and
almost sure convergence of the designed continuous-time
algorithm. The problem in this section has been previously
discussed in our recent work [1].

A. Distributed Estimation Algorithm

Assume each sensor in the network observes the unknown
parameter vector independently. The local continuous-
time noisy measurement obtained by sensor at
time is expressed as

(15)

where is the measurement vector of sensor at time
; is the measurement noise, which is modeled as

a standard white noise, , ,
denotes its noise intensity matrix;

is the random time-varying measurement matrix,
, each element of the matrix is modeled as

a standard white noise, denotes its noise intensity
matrix.

Corresponding to the discrete-time case with Markovian
topology switches in Section II-B, here the random switches
of communication topologies are driven by a continuous-time
Markov chain , with the state space . When

, the communication topology of the sensor
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network at time is accordingly. At the sender side of
the channel , sensor sends its estimate
to sensor . At the receiver side of this channel, sensor receives
an estimate of , denoted by

if ,
if

(16)

where is the communication noise, which is modeled as
standard white noise, , ,

denotes its noise intensity matrix.
Under the Markovian random switching communication

topologies, and the communication scheme defined by (16),
for each sensor , we propose the following
continuous-time distributed real-time estimation algorithm to
estimate the unknown parameter :

(17)

where , , and have the same meanings as in
(3). and are defined by (15) and (16), respectively.
When is empty, is understood as zero.

Substituting (15), (16) into (17), we obtain the following com-
pact form of the distributed estimation algorithm:

(18)

where , is the Lapla-
cian matrix of , ,

;
,

,
denotes the th row of the matrix ;

, ;

, denotes
the th row of matrix ; ,

.
Assume the -algebras ,

and , generated, respectively, by the noise se-
quences , and , are independent. Then
the algorithm (18) is a stochastic system driven by an

dimensional standard white noise, which can
be written in the following Itô stochastic differential equation:

(19)

where , is an
dimensional standard Brownian motion.

B. Convergence Analysis

The discussions in this subsection are based on the complete
probability space , equipped with a filtration

. To proceed the convergence analysis of the distributed es-
timation algorithm (19), we need the following preparations.

For given matrix with ,
, , , we define the following

operators and : ,
.

It can be seen that the above operators actually make a long
vector out of a matrix by stacking up its columns from left to
right. The operator has the following property ([25]):

(20)

where , and are matrices with proper dimensions.
In order to prove the convergence of the algorithm (19), we

make the following assumptions:
B1) is a homogeneous ergodic Markov
chain with right continuous trajectories, taking values on
the set . is the transition
rate matrix of , satisfying .

has the initial distribution .
B2) The initial estimation state satisfies

. , , and are
independent.
B3) The matrix is of full rank.
B4) The gain function satisfies: ;

; .
Remark 6: From the Markov chain theory ([23]), if takes

values in a finite state space, and its transition probability matrix
is standard, i.e., ,

, , then the transition rate ma-
trix is conservative, i.e., , .
This together with the condition in
B1) ensures is doubly stochastic, which amounts to saying
the digraph generated by is balanced. Thus,
is a symmetric transition rate matrix. In addition to the ergod-
icity of (i.e., is irreducible, positive recurrent), we know
that is irreducible and the digraph generated is
strongly connected. Denote , . By
the ergodicity of , there exist limiting probabilities

which do not depend on the initial distribution, and satisfy
and .

Now we come to analyze the convergence of the distributed
estimation algorithm (19). It can be seen that algorithm (19)
is actually a time-varying stochastic system with Markov
switches. One prominent feature of this kind of systems is that
the state is not Markov, while the augmented
state is Markov. Therefore, we can
use tools such as infinitesimal generator of the Markov process

and generalized Itô formula ([26]) to study the
convergence properties of the designed algorithm (19).

Theorem 4.1: Under Assumptions A1), B1)–B4), the con-
tinuous-time distributed estimation algorithm (19) converges in
mean square, i.e.,

(21)

where is the parameter estimation error.
Proof: See Appendix D.
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Based on Theorem 4.1, we can prove the almost sure conver-
gence of the algorithm (19).

Theorem 4.2: Under Assumptions A1), B1)–B4), the contin-
uous-time distributed estimation algorithm (19) converges al-
most surely.

Proof: See Appendix E.
Remark 7: From Theorems 4.1 and 4.2, we can see that dif-

ferent from the discrete-time case, the gain function is not
required to satisfy a condition like A6 ). In addition, from the
proof of Theorem 3.4, we can see that the Markovian nature
of the time-varying network topology is not strictly necessary
for the discrete-time case as long as the union graph of de-
terministically switching network topology without any prob-
abilistic assumptions is assumed to be connected ([9]), or there
is a positive probability of visiting all the states of the chain
over an interval of length . In contrast, the Markovian property
plays an important role in the convergence analysis of the con-
tinuous-time algorithm (19). The essential difference between
the analysis methods of the discrete-time stochastic systems and
that of the continuous-time stochastic systems may arise from
the transient limitation analysis requirement (e.g., the infinites-
imal generator) caused by the continuum nature of the contin-
uous-time stochastic systems.

Similar to Theorem 3.3, we move on to analyze the conver-
gence of the distributed estimation algorithm with sensor-de-
pendent gain functions , . In this case, the
continuous-time distributed estimation algorithm (19) becomes

(22)

where , , are de-
fined as in (19).

On the convergence of the algorithm (22), we have the fol-
lowing theorem.

Theorem 4.3: Suppose Assumptions A1), B1)–B3) hold, and
for each

(23)

(24)

(25)

Then the continuous-time distributed estimation algorithm (22)
converges in mean square. In addition, if (25) is replaced by

(26)

then the algorithm (22) converges almost surely.
Proof: See Appendix F.

Fig. 1. Trajectories of parameter estimates in sensor network (a) �� and
(b) �� .

V. NUMERICAL EXAMPLES

In this section, we will give two numerical examples to il-
lustrate the convergence results of Sections III and IV in both
discrete-time and continuous-time settings.

Example 1: Consider two sensor networks and ,
whose sensors are denoted by and , respectively.
Each sensor network carries out a common task to estimate the
unknown parameter vector .

The local noisy measurement of sensor ( )
is taken as , where ,

, , , ,
, are independent white noises with uniform distri-

bution on . The signal at the receiver side of a com-
munication channel is described by (2), where

, and the elements of are white noises with
uniform distribution on . The elements of all com-
munication noises are Gaussian white noises with dis-
tribution . The random switches of communication
topologies for sensor network are driven by the homo-
geneous ergodic Markov chain . The state space of is

, and the transition probability matrix is taken as

, where state ( ) stands for

the communication topology graph with its weighted adja-

cency matrix , ,

. We use the algorithm (4) to estimate the un-

known parameter with the initial states ,
. The gain function is .

In Fig. 1(a), it is evident that the single sensor in fails
to estimate the second element of . This shows the necessity
to conduct parameter estimate via coordination among sensors.
Fig. 1(b) shows that the trajectories of the estimates under noisy
local measurements converge to the true value of the unknown
parameter, which verify the convergence results of Theorem 3.4.
Thus, we conclude that the designed algorithm (4) possesses ro-
bustness to random measurement noises, random communica-
tion noises, random link gains and Markovian switching com-
munication topologies.

Example 2: The convergence properties of the distributed
continuous-time parameter estimation algorithm (17) will be
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Fig. 2. Trajectories of parameter estimates of continuous-time algorithms by
sensor � and � .

illustrated. The unknown parameter vector to be estimated is
. We consider a sensor network with two sensors

and . The local noisy measurements of sensor ( )
are given by (15), where , ,

, . All communication noise intensity matrices
are taken as . The state space of the continuous-time
homogeneous ergodic Markov chain is denoted by

, where state ( ) corresponds to the commu-
nication topology graph with the Laplacian matrix

, . The transition rate matrix of

is given by , and the initial probability

distribution of is taken as . The gain function
is in the form , and the initial values of parameter
estimates are . By choosing algorithm
coefficients as above, all conditions of Theorem 4.1 and The-
orem 4.2 hold. The trajectories of parameter estimates by sensor

and are shown in Fig. 2. It can be seen that as time goes
on, the parameter estimate of each sensor’s algorithm converges
to the true value of .

VI. CONCLUDING REMARKS

The purpose of distributed estimation over sensor networks is
to study how to design an estimator for each sensor so that a nice
estimate of the unknown parameter can be given cooperatively
via local communications and interactions among sensors. In
this paper, we have considered the design and convergence of
distributed estimation algorithms under various uncertainties
during sensing measurements and communicating signals
among sensors. The sensing and communication models ad-
dress uncertainties of measurement and communication noises,
random signal losses, and random link gains. The temporal
correlations of random topology switches are described by a
Markov chain. Distributed algorithms in both discrete-time
and continuous-time case are proposed. By using probability
limit theory, stochastic differential equation theory, algebraic
graph theory and Markov chain theory, under mild conditions
on measurement and communication noise, gain function,
and topology-switching Markov chain, we prove the designed
algorithms converges both in mean square and almost surely.

Interesting extensions of this paper might concern the con-
vergence rate estimation of the continuous-time algorithm, the
effects of other parameters on convergence rate such as the tran-
sition probabilities of the Markov chain and the link gains, the
relaxation of independence assumption on measurement ma-
trices to certain correlation assumptions, and the use of recur-
sive least squares (RLS)-type local filtering algorithms instead

of stochastic gradient algorithms. In addition, when the param-
eter to be estimated is time-varying, how to combine the existing
local estimation algorithms and dynamic consensus algorithms
([27]) to produce efficient distributed dynamic estimation algo-
rithms, and how to conduct their convergence analysis are im-
portant issues. We believe dynamic consensus schemes will play
an active role in estimating unknown dynamic parameters coop-
eratively, and enhancing the global observability of the sensor
network. These topics require further investigation.

APPENDIX A
PROOFS OF THEOREM 3.1 AND THEOREM 3.2

Lemma A.1: ([28]) Let ,
and be real sequences, satisfying

, , , ,
, and .

Then . Particularly, if ,
, then .

Proof of Theorem 3.1: By Assumption A1 ) and properties of
the Kronecker product ([25]), one can obtain

. Thus, (4) can be written in the following difference
equation associated with the parameter estimation error :

(A.1)

Let . Then, by (A.1) we have

(A.2)

where , are defined by

,

.
Define
. Then, is adapted to . Below, we want to estimate

.
From Assumptions A1 ), A5) and Lemma 3.1 we know that,

no matter what the value takes, the probability of the event
is always greater than zero. Thus, there is a constant

, such that
and

(A.3)

where .
By Assumptions A2)–A4) and (5) we have
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, which together
with the definition of and leads to

(A.4)

From the definition of and Assumption A4) it fol-
lows that

if

otherwise.
(A.5)

Thus, by Assumption A4) and , there is
such that

(A.6)

Similarly, there exists such that

(A.7)
By (5) we know that there exists such that

(A.8)

From (A.6)–(A.8) and Cauchy inequality it
follows

. This together with (A.2), (A.3) and (A.4)
implies

(A.9)

and hence, by Assumptions A2)–A3),

(A.10)
where

. Noticing that , ,

there exists such that , and
, . Thus, by A6 ) we have

(A.11)

(A.12)

(A.13)

which together with (A.10) and Lemma A.1 conclude the proof
of the theorem.

Proof of Theorem 3.2: From Assumptions A2), A3), A6), and
the monotone convergence theorem ([24]), we have

(A.14)

This implies that ,
a.s., , a.s., and

, a.s. Thus, by (A.9) in
the proof of Theorem 3.1 and nonnegative supermartingale
convergence theorem ([29, Lem. D.5.3]) we know that
converges almost surely as , and

(A.15)

which together with Theorem 3.1 leads to (9). Further-
more, if , by (A.15), Cauchy inequality, and
Kronecker lemma ([24]) we have

, as
.

APPENDIX B
PROOF OF THEOREM 3.3

Proof of Theorem 3.3: Let ,
, ,

, and

.
Then, (11) can be rewritten into the following form:

(B.1)

Below we will estimate . Since satisfies
A6 ), it can be seen that , . Similar to
the derivation of (A.9), one can get
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(B.2)

where
,

. By (B.1) and (B.2)
we have

(B.3)

where

. Taking mathematical
expectation on both sides of (B.3), by Assumptions
A2)–A3) we have

, where
is defined in (A.10). Since each gain function

satisfies A6 ) and (12), it can be seen that ,
, , . Thus, similar to

(A.11)–(A.13), there is such that ,
; ; as .

This together with Lemma A.1 leads to the mean square
convergence of the algorithm (11).

By Cauchy inequality, we have
. This together with (A.14) and

the nonnegative supermartingale convergence theorem ([29,
Lem. D.5.3]) implies that converges almost surely as

, and , a.s.. Thus, similar to the
proof of Theorem 3.2, we can obtain (13).

APPENDIX C
PROOF OF THEOREM 3.4 AND THEOREM 3.5

Proof of Theorem 3.4: By (A.1) we have

(C.1)

where is a positive integer,

, , , ;

. By Assumption A1) and
[6, Th. 7] we know that is the Laplacian
matrix of the mirror graph , i.e.,

, . By Assumption A6 ) we know that there is
such that

which together with Assumption A6 ) gives

(C.2)

where is a constant related to .
Below we want to show

(C.3)

To this end, define the -algebras

and

. Then, it follows that

(C.4)

Noticing that ,

,

, by
(C.4) we have (C.3).

By (A.5), (A.8), the definition of , Minkowski in-
equality and Cauchy inequality, there exist and

, such that
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(C.5)

By Assumption A5), there is such that for any initial
time and initial state, the Markov chain will visit all
its states in the time interval with positive probability

, where does not depend on . Thus, by Lemma 3.1
and the definition of the union graph, there is such that

which together with (C.2), (C.3) and (C.5) leads to

(C.6)

Similar to (A.9) in Theorem 3.1, we know that there exist
, such that

(C.7)

This together with Assumption A2) and (C.6) implies that there
is such that

(C.8)

By Assumption A6 ), there is such that
,

. Thus, similar
to Theorem 3.1, by Lemma A.1 and (C.8) we have

.

For any , define . Then, we have
. Similar to the estimation of (C.5), by (A.1) and (C.7) there is

such that

Thus, by Assumption A6 ) and , we have

.

We now prove the almost sure convergence of the algorithm
(4). For any , similar to (C.1), (C.2), (C.5),
and (C.6), we have

(C.9)

Noticing that ,
, by (C.7) and

Assumptions A2)–A3), and applying the nonnegative
supermartingale convergence theorem ([29, Lem. D.5.3]) to
(C.9), we obtain that converges almost surely
as , and

(C.10)

From it follows that
, which implies a.s. Further-

more, (C.10) implies
. Thus, if , by Cauchy inequality,

and Kronecker lemma ([24]) we have
a.s., as

.
Proof of Theorem 3.5: By (B.1) we have

(C.11)

where ,
, , ;
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, is defined in (B.1). Similar
to (C.3) we have

(C.12)

Similar to (C.5), by Minkowski inequality and Cauchy in-
equality, there exist , such that

(C.13)

Thus, similar to (C.6), by (C.11)–(C.13), there exist , ,
, , such that

(C.14)

Similar to (C.7), we have . Then from
(C.14) and Lemma A.1, by the similar derivation of Theorem
3.4, we have . The almost sure convergence prop-

erty and the convergence rate estimate of the algorithm can be
obtained by almost the same deduction as Theorem 3.4, just
noticing that (14) implies (12), and ,

has the same recursive estimate as (C.14).
APPENDIX D

PROOF OF THEOREM 4.1

Proof of Theorem 4.1: The algorithm (19) can be written in
the following stochastic differential equation associated with the
parameter estimation error :

(D.1)

where is defined in (18). In the sequel, we want
to analyze3 . To this end, define

. Then, .
By (D.1), [21, Lem. 4.2] and Itô formula ([30]) we have

or equivalently,

(D.2)

Denote and .
From (20), (D.2) and the definition of Kronecker sum it follows
that

which implies

(D.3)

where ,
, and are defined by

(D.4)

Noticing that is a set of balanced graphs, by
[6, Th. 7] and the definition of Kronecker sum, we know that

, , where is the mirror graph of ,

is the Laplacian matrix of . Thus, by (D.3) we have

(D.5)

3Different from the scalar random process � ��� defined in Section III, here
� ��� � is a deterministic function.
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where is the with replaced by . As the tran-

sition rate matrix is doubly stochastic, we know that
corresponds to a symmetric irreducible transi-

tion rate matrix.
Below, we will prove that the matrix

is positive definite. First, similar to [31, Cor. 3.7], we prove that
has a zero eigenvalue with algebraic multi-

plicity , with corresponding left and right eigenvectors given
by , . In fact, it can
be seen that is a transition rate matrix, and

is block diagonalizable, i.e., there exists a similarity trans-
formation such that is a block diagonal matrix
with irreducible blocks. If is a eigenvector corresponding to
the zero eigenvalue of , then by [31, Lem. 3.2],
we have . By the definition
of , we get , . Thus, from

we have , . Fur-
thermore, noticing that is balanced,

. By Assumption A1), the balanced

graph contains a spanning tree, which amounts to
saying that is an irreducible transition rate matrix.

Thus, by [31, Lem. 3.2], the eigenvectors of the null-space of the
matrix

has the following form:

, .
Since is a nonnegative matrix, if

there is a nonzero vector such that
, then by the positive semi-definiteness of the

matrix and we know that

which implies , .
Thus,

. By properties of the Kronecker
product ([25]), the above equation can be simplified as:

, , . This contradicts the global observability condi-
tion B3). Thus, is positive definite.

Since , there is such that ,

, where is the minimal eigenvalue of
. Noticing that is negative semi-definite, by the

inequality , , ,
and (D.5), for any we have

(D.6)

which together with the comparison theorem ([32]) gives

(D.7)

where ,

. From (D.5)

and , one can obtain the boundedness of
. Thus, by and , we have

. In addition, by Remark 6 we know that
there is such that for any

where , , . Since
, there is such that for any ,

. Let . Then, we have

This together with the arbitrariness of implies that
. Thus, from (D.7) it follows

, . Since
, we get (21).

APPENDIX E
PROOF OF THEOREM 4.2

Proof of Theorem 4.2: Let .
Noticing that is balanced, by (D.1) and Itô for-
mula we have

.
Taking integral from 0 to on both sides of the above equation

gives

(E.1)

By [26], there exists a unique solution for the Mar-
kovian switching stochastic differential equation (D.1),
which satisfies , .
Thus, is a martingale, i.e.,

, . Denote
. Then, by (E.1)

we have
.

Therefore, is a continuous super-
martingale. Here, we have used the positive semi-defi-
niteness of , . Noticing that

, by Assumption B4) we have
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. Then, by con-
tinuous supermartingale convergence theorem ([33]) we
know that there is a random variable , such that

a.s., which gives
a.s.. Furthermore, by (21)

we have a.s., which implies Theorem 4.2.

APPENDIX F
PROOF OF THEOREM 4.3

Proof of Theorem 4.3: We rewrite algorithm (22) in the fol-
lowing stochastic differential equation associated with the pa-
rameter estimation error :

(F.1)

where ,
, .

By (F.1), similar to the derivation of (D.2), we have

, which implies

(F.2)

Let

(F.3)

Then, by (D.4) we can transform (F.2) into the following com-
pact form:

(F.4)

Noticing that is a set of balanced graphs, by (F.4)
we have

(F.5)

where is the with replaced by , is the mirror

graph of , is the Laplacian matrix of . As the tran-

sition rate matrix is doubly stochastic, we know that
corresponds to a symmetric irreducible transition

rate matrix.
By (25) we have , and hence, by the defi-

nition of in (F.3), . From the definition of
Kronecker product, can be expressed
by

.
From this, noticing that is negative semi-definite,

is positive definite and , by the inequality

, , , and (F.5),
we know that there is such that for any

(F.6)

where is the minimal eigenvalue of
. Then, similar to (D.6), by the comparison the-

orem ([32]), Assumption B1), (23), (24), and (F.6), we have
, which implies .

Hence, we have
.
Below, we prove the almost sure conver-

gence of algorithm (22). By (F.1) we have

. Taking
integral from 0 to on both sides of the above equation leads to

(F.7)

By [26], there exists a unique solution for the Markovian
switching stochastic differential equation (F.1), which satisfies

(F.8)
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Thus, is a martin-
gale, i.e., ,

. Denote

. Then,
by (F.7) and (F.8) we have

.

Therefore, is a continuous supermartingale.
Here, we have used the positive semi-definiteness of matrix

, . Noticing that , by
(24), (26), (F.8) and Lyapunov inequality ([24]) we have

. Then, by continuous supermartingale
convergence theorem ([33]), we know that there exists
a random variable such that
a.s., which gives

. In addition,
by (23) one can see that (26) implies (25), which together
with (23) and (24) gives . Thus, we have

a.s., which implies Theorem 4.3.
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